• sitemap?y41jd.xml
  • 中文 |



    2020-09-27 12:01:38

    《【ued彩票充值】欢迎访问》By assuming this or any other well-proved example, and estimating larger or smaller shafts by keeping their diameters as the cube root of the power to be transmitted, the distance between bearings as the diameter, and the speed inverse as the diameter, the reader will find his calculations to agree approximately with the modern practice of our best engineers. This is not mentioned to give proportions for shafts, so much as to call attention to accidental strains, such as winding belts, and to call attention to a marked discrepancy between actual practice and such proportions as would be given by what has been called the measured or determinable strains to which shafts are subjected.In shading drawings, be careful not to use too deep tints, and to put the shades in the right place. Many will contend, and not without good reasons, that working drawings require no shading; yet it will do no harm to learn how and where they can be shaded: it is better to omit the shading from choice than from necessity. Sections must, of course, be shaded—not with lines, although I fear to attack so old a custom, yet it is certainly a tedious and useless one: sections with light ink shading of different colours, to indicate the kind of material, are easier to make, and look much better. By the judicious arrangement of a drawing, a large share of it may be in sections, which in almost every case are the best views to work by. The proper colouring of sections gives a good appearance to a drawing, and conveys an idea of an organised machine, or, to use the shop term, "stands out from the paper." In shading sections, leave a margin of white between the tints and the lines on the upper and left-hand sides of the section: this breaks the connection or sameness, and the effect is striking; it separates the parts, [85] and adds greatly to the clearness and general appearance of a drawing.

    Lastly, proportions; having estimated the cutting force required at one ton, although less than the actual strain in a machine of this kind, we proceed upon this to fix proportions, [157] beginning with the tool shank, and following back through the adjusting saddle, the cutting bar, connections, crank pins, shafts, and gear wheels to the belt. Starting again at the tool, or point of cutting, following through the supports of the rack, the jaws that clamp it, the saddle for the graduating adjustment, the connections with the main frame, and so on to the crank-shaft bearing a second time, dimensions may be fixed for each piece to withstand the strains without deflection or danger of breaking. Such proportions cannot, I am aware, be brought within the rules of ordinary practice by relying upon calculation alone to fix them, and no such course is suggested; calculation may aid, but cannot determine proportions in such cases; besides, symmetry, which cannot be altogether disregarded, modifies the form and sometimes the dimensions of various parts.

    4. The speed at which shafts should run is governed by their size, the nature of the machinery to be driven, and the kind of bearings in which they are supported.

    Nothing can be more unreasonable than to expect an apprentice engineer to begin by an inductive course in learning and reasoning [3] about mechanics. Even if the mind were capable of such a course, which can not be assumed in so intricate and extensive a subject as mechanics, there would be a want of interest and an absence of apparent purpose which would hinder or prevent progress. Any rational view of the matter, together with as many facts as can be cited, will all point to the conclusion that apprentices must learn deductively, and that some practice should accompany or precede theoretical studies. How dull and objectless it seems to a young man when he toils through "the sum of the squares of the base and perpendicular of a right-angle triangle," without knowing a purpose to which this problem is to be applied; he generally wonders why such puzzling theorems were ever invented, and what they can have to do with the practical affairs of life. But if the same learner were to happen upon a builder squaring a foundation by means of the rule "six, eight, and ten," and should in this operation detect the application of that tiresome problem of "the sum of the squares," he would at once awake to a new interest in the matter; what was before tedious and without object, would now appear useful and interesting. The subject would become fascinating, and the learner would go on with a new zeal to trace out the connection between practice and other problems of the kind. Nothing inspires a learner so much as contact with practice; the natural tendency, as before said, is to proceed deductively.A learner is apt to reverse this proposition at the beginning, and place time before skill, but if he will note what passes around him, it will be seen that criticism is always first directed to the character of work performed. A manager does not ask a workman how long a time was consumed in preparing a piece of work until its character has been passed upon; in short, the quality of work is its mechanical standard, and the time consumed in preparing work is its commercial standard. A job is never properly done when the workman who performed it can see faults, and in machine fitting, as a rule, the best skill that can be applied is no more than the conditions call for; so that the first thing to be learned is to perform work well, and afterwards to perform it rapidly.

    This state of improvement which has been reached in machine-tool manufacture, is not only the result of the skill expended on such tools, but because as a notable exception they are the agents of their own production; that is, machine tools produce machine tools, and a maker should certainly become skilled in the construction of implements which he employs continually in his own business. This peculiarity of machine-tool manufactures is often overlooked by engineers, and unfair comparisons made between machines of this class and those directed to wood conversion and other manufacturing processes, which machinists, as a rule, do not understand.

    Reviewing these mechanical conditions, we may at once see sufficient reasons for the platen movement of planing machines; and that it would be objectionable, if not impossible, to add a traversing or cutting action to tools already supported through the medium of eight joints. To traverse for cutting would require a moving gib joint in place of the bolted one, between the standards and main frame, leading to a complication of joints and movements quite impracticable.

    Such tools consist of a combination of cutting edges, all of which may be said to depend on each one; because if one breaks, the next in order will have a double duty to perform, and will soon follow—a reversal of the old adage, that 'union is strength,' [142] if by strength is meant endurance.CHAPTER IX. WIND-POWER.

    Institute of Plasma Physics, Hefei Institutes of Physical Science (ASIPP, HFIPS) undertakes the procurement package of superconducting conductors, correction coil, superconducting feeder, power supply and diagnosis, accounting for nearly 80% of China's ITER procurement package.

    "I am so proud of our team and it’s a great pleasure for me working here," said BAO Liman, an engineer from ASIPP, HFIPS, who was invited to sit near Chinese National flay on the podium at the kick-off ceremony to represent Chinese team. BAO, with some 30 ASIPP engineers, has been working in ITER Tokamak department for more than ten years. Due to the suspended international traveling by COVID-19, most of the Chinese people who are engaged in ITER construction celebrated this important moment at home through live broadcasting.

    One of ASIPP’s undertakes, the number 6 poloidal field superconducting coil (or PF6 coil) , the heaviest superconducting coil in the world, was completed last year, and arrived at ITER site this June. PF6 timely manufacturing and delivery made a solid foundation for ITER sub-assembly, it will be installed at the bottom of the ITER cryostat.

    Last year, a China-France Consortium in which ASIPP takes a part has won the bid of the first ITER Tokamak Assembly task, TAC-1, a core and important part of the ITER Tokamak assembly.

    Exactly as Bernard BIGOT, Director-General of ITER Organization, commented at a press conference after the ceremony, Chinese team was highly regarded for what they have done to ITER project with excellent completion of procurement package.


    The kick-off ceremony for ITER assembly (Image by Pierre Genevier-Tarel-ITER Organization) 


    the number 6 poloidal field superconducting coil (Image by ASIPP, HFIPS) 


    ITER-TAC1 Contract Signing Ceremony (Image by ASIPP, HFIPS)

    World dignitaries celebrate a collaborative achievement

    Related Articles
    Contact Us
    • 86-1077-685977521 (day)

      86-1077-6877597289 (night)

    • 86-1077-6851107795 (day)

      86-1077-6851277458 (night)

    • cas_en@cas.cn

    • 52 Sanlihe Rd., Beijing,

      China (100864)

    Copyright © 2002 - Chinese Academy of Sciences